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Is an ILC useful?

• ILC ⇒ high-precision measurements of Higgs branching 
fractions, to study Beyond the Standard Model (BSM). 

• BSM requires accurate SM parameters: e.g.,  

- (h→bb̅) to 0.3% requires mb to 0.3% and αs to 0.5%. 

- (h→cc̅) to 0.7% requires mc to 0.7% and αs to 1%. 

- (h→gg) to 0.6% requires αs to 0.6%. 

• Need: mb to 0.15%, mc to 0.35%, αs to 0.25% 

• Is this possible over the next decade or so? 

- Most dramatic recent develops are from LQCD.

See: Lepage, Mackenzie and Peskin, soon.



Eg: current-current correlator in LQCD

Compute for heavy valence quark h: 
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• Mass factors imply UV finite (PCAC because HISQ). 

• Implies: 
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Moments

Low-n moments perturbative (Ethreshold = 2mh): 

!

!

!

Implies:

from lattice simulations 
(in place of experiment)

from continuum 3rd-order 
perturbation theory — gives 
coupling

gives mass mh(mh) 
(mh only scale)
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N.B. Fit n=4,6,8,10 for range of mh  
to get high-precision mc, mb, and αs!



What is lattice QCD (LQCD)?
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⇒ Fields ψ(), Aμ() specified only at grid sites (or links); 
interpolate for other points. 

⇒ Solving QCD → multidimensional integration:
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LQCD simulations

1. Integrate path integral numerically — need Monte Carlo 
simulation methods. 

2. Tune five free parameters — bare mu=md, ms, mc, mb, and 
αs — using, e.g., m(π), m(K), m(ηc), m(ηb) and fπ. 

3. Tuned LQCD simulation = real QCD, with no free 
parameters. Compute vacuum expectation values of 
numerous operators for multiple lattice spacings ɑ. 
Extrapolate to ɑ=0 to extract physics. 

!

N.B. LQCD ⟷ experiment.



Moments (again)

Low-n moments perturbative (Ethreshold = 2mh): 

!

!
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Implies:

from lattice simulations 
(in place of experiment)

from continuum 3rd-order 
perturbation theory — gives 
coupling

gives mass mh(mh) 
(mh only scale)
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N.B. Fit n=4,6,8,10 for range of mh  
to get high-precision mc, mb, and αs!



Current best results

mc(mc,nf=4) = 1.273(6) GeV    (0.47%, need 0.35%) 

mb(mb,nf=5) = 4.164(23) GeV   (0.55%, need 0.15%) 

αMS(MZ,nf=5) = 0.1183(7)     (0.59%, need 0.25%)

McNeile et al (HPQCD), Phys. Rev. D82, 034512 (2010)

Note that the ratio mbð!; nfÞ=mcð!; nfÞ is independent
of ! and nf. We obtain the following result for this mass
ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

"0 $ "MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

"MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for "MSð!; nf ¼ 3Þ correspond-
ing to our value for "0. For this figure we extracted values
for "MS from each Rn separately by dividing out the a2

dependence and zð3; m#h
Þ using our best-fit parameters,

and then solving for "MS by matching with perturbation
theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single "MS for all of them.)
The dominant sources of error for our results are listed in

Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark
masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh % mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
essentially no effect on the results. The prior for the

FIG. 2 (color online). QCD coupling "MSð!; nf ¼ 3Þ as a
function of m#h

where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS

extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m#h

Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc "MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%
Perturbation theory 0.5 0.1 0.5 0.4
Statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0
Errors in r1 0.2 0.1 0.1 0.1
Errors in r1=a 0.1 0.3 0.2 0.1
Errors in m#c

, m#b
0.2 0.1 0.2 0.0

"0 prior 0.1 0.1 0.1 0.1
Gluon condensate 0.0 0.0 0.0 0.2

Total 0.6% 0.7% 0.8% 0.6%

MCNEILE et al. PHYSICAL REVIEW D 82, 034512 (2010)
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we fit moments with 4 ! n ! 10 from 22 of these parame-
ter sets (the ones with am!h

! 1:95)—88 pieces of simu-
lation data in all. In this section we first describe the fitting
method used to extract the masses and coupling, and then
we review our results.

A. Constrained fits

We analyze all four Rn’s for all 22 parameter sets
simultaneously using a constrained fitting procedure based
upon Bayesian ideas [19]. In this procedure we minimize
an augmented "2 function of the form

"2 ¼
X

in;jm

!Rnið#$2
R Þin;jm!Rmj þ

X

$

%"2
$; (32)

where

!Rni ' Rlatt
ni $ Rnð&i; m!hi; ai; NamÞ; (33)

the Rlatt
n come from Table II with corrections from

Eqs. (26), (28), and (30); fit function Rnð( ( (Þ is defined
by Eq. (15); and #2

R is the error covariance matrix for the
Rlatt
n . The sums i, j are over the 22 sets of lattice spacings

and quark masses; the sums n, m range over the moments
4, 6, 8, and 10.

Function Rnð&i; m!hi; ai; NamÞ depends upon a large
number of parameters, all of which are varied in the fit to
minimize "2. Priors %"2

$ are included for each of these:

(i) parameters zj, with prior Eq. (13), from the 1=m!h

expansion of zð&=mh;m!h
Þ;

(ii) parameters cðnÞij , with prior Eq. (17), from the finite-
lattice spacing corrections;

(iii) unknown perturbative coefficients rnj, with prior
Eq. (21) (evolved to &=mh ¼ 3);

(iv) coupling parameter logð'0Þ, with prior Eq. (22);
(v) (4 in the QCD ( function, with prior Eq. (25);
(vi) lattice spacings ai for each gluon-configuration set,

with priors specified by simulation results for r1=a
(Table I) and the current value for r1 [Eq. (10)];

(vii) values for am!hi, with priors specified by our simu-
lation results (Table II).

The renormalization scales &i are obtained from the
ratio &=mh ¼ 3, simulation results for m!h

, and Eq. (7).
We take Nam ¼ 30 for our final results.

B. Results

We fit our simulation data for the reduced moments Rlatt
n

(Table II) using fit function Rnð( ( (Þ [Eq. (15)] with Nam ¼
30, as discussed in the previous section. The best-fit values
for parameters zj give us the mass-ratio function
zð&=mh ¼ 3; m!h

Þ [Eq. (7)], which we plot in Fig. 1. We
also show our simulation results there for Rlatt

n =rn, together
with the best-fit lines for each lattice spacing. Results are
shown for the three moments that depend upon z, 5 differ-
ent lattice spacings, and quark masses ranging from below
the c mass almost to the b mass. The simulation data were

all fit simultaneously, using the same functions zð3; m!h
Þ

and 'MSð&Þ [with & ¼ 3m!h
=ð2zÞ] for all moments. The

fits are excellent, with "2=88 ¼ 0:19 for the 88 pieces of
simulation data we fit.
Evaluated at m!c

¼ 2:985ð3Þ GeV [27], the mass-ratio
function is zð3; m!c

Þ ¼ 1:507ð7Þ. Combining this with
Eq. (9) and perturbation theory, we can obtain the follow-
ing results for the MS c-quark mass at different scales:

mcð3mc; nf ¼ 3Þ ¼ 0:991ð5Þ GeV;
mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð6Þ GeV;

mcðmc; nf ¼ 4Þ ¼ 1:273ð6Þ GeV:
(34)

Similarly at m!b
¼ 9:395ð5Þ GeV [28], the mass-ratio

function is zð3; m!b
Þ ¼ 1:296ð8Þ, and we obtain the follow-

ing results for the MS b-quark mass at different scales:

mbð3mb; nf ¼ 3Þ ¼ 3:622ð22Þ GeV:
mbð10 GeV; nf ¼ 5Þ ¼ 3:617ð25Þ GeV;

mbðmb; nf ¼ 5Þ ¼ 4:164ð23Þ GeV:
(35)

FIG. 1 (color online). Function zð&=mh ¼ 3; m!h
Þ '

m!h
=ð2mhÞ as a function of m!h

. The solid line, plus gray error

envelope, shows the a ¼ 0 extrapolation obtained from our fit.
This is compared with simulation results for Rn=rn for n ¼ 6, 8,
10 from our 5 different lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. Dashed
lines for smaller lattice spacings extend farther to the right. The
points marked by an) are for the largest mass we tried (last line
in Table II); these are not included in the fit because am!h

is too

large. Finite-a errors become very small for the larger-n mo-
ments, causing points from different lattice spacings to overlap.

HIGH-PRECISION c AND b MASSES, AND QCD . . . PHYSICAL REVIEW D 82, 034512 (2010)
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Simulate possible future results

Analysis of current data creates a fit function that describes 
the dependence of LQCD results on lattice spacing, 
perturbation theory, statistics, quark masses, etc: 

⇒ Predict what LQCD data at a smaller lattice spacing or 
a different quark mass or … will look like by evaluating 
fit function at smaller lattice spacing or … 

⇒ Add realistic noise to generate fake LQCD data with 
smaller lattice spacings and/or different mass and/or 
better statistics and/or …



• Rerun analysis but now on fake data plus existing LQCD 
data to extract new (fake) results for mb, mc, αs.  

⇒ Impact of fake data on errors. 

• Also rerun analysis while pretending that 4th-order 
perturbation theory is known (add fake 4th-order 
coefficients). 

⇒ Map realistic scenarios for hardware/software/theory 
improvements onto improvements in the precision of 
mb, mc, αs.



Scenarios for the next decade or so

Some combination of following likely doable: 

• 4th-order perturbation theory completed (continuum 
calculation). 

• 100x increase in computing power ⇒  

- Reduce lattice spacing to 0.03fm and 0.0225fm  
(from 0.045fm). 

- 100x increase in statistics.



Historical processor-cluster price / performance data from 
measurements at USQCD (Fermilab):

How long for 100x in computing?

Price/Performance:*GPUBAccelerated*

Dsg,*12k*
GPU*Clusters*

Price/performance figures for Dsg and 12k are based on a 
rating of 157 effective GF/s for an NVIDIA K20. 

Acquisi'on*Strategy* 16*

• 10–15 years with 
cluster technology. 

• ??? years with GPUs 
or ….



Simulation of simulations (% errors)
couplings ∝  1/2

1

mb(10) ↵MS(MZ) mc(3) h ! bb h ! cc h ! gg

current results (prelim.) 0.65 0.49 0.50 0.82 0.74 0.64

4

th
-order 0.63 0.32 0.30 0.74 0.49 0.42

a = 0.03 fm 0.25 0.36 0.44 0.38 0.60 0.47

a = 0.03 and 0.023 fm 0.15 0.28 0.43 0.27 0.54 0.36

4

th
-order, a = 0.03 fm 0.24 0.21 0.22 0.30 0.32 0.27

4

th
-order, a = 0.03 and 0.023 fm 0.14 0.16 0.22 0.19 0.29 0.21

4

th
-order, a = 0.03 and 0.023 fm, 100⇥stats 0.10 0.11 0.21 0.14 0.26 0.14

ILC goal 0.15 0.25 0.35 0.30 0.70 0.60



Are LQCD errors believable?

Lattice allows checks that are impossible in the continuum: 

• Simultaneously fit data for a range of quark masses mh 
between mc and mb  ⇒  treat coefficients of αs(mh)n for n>3 
as fit parameters:  
 
 
 
 
 
 
Much more reliable estimate of perturbative errors than, 
e.g., variation as μ→μ/2 and μ→2μ.

Pert’n th.

Fit parameters.

gn(�MS(mh)) = cn0 + cn1�MS + cn2�2
MS
+ cn3�3

MS

+ cn4�4
MS
+ cn5�5

MS
+ · · ·



• Nonperturbative ratios of quark masses easy to measure 
in LQCD. Compare nonperturbative mb/mc (4.49(4)) with 
perturbative result (4.51(4)). Highly non-trivial check.  

• Vary valence quark mass to vary/fit nonperturbative 
effects. O.P.E. implies: 

!

!

!

!

N.B. Continuum results using R(ee̅) data (instead of LQCD) to  
        compute vector correlators give same masses, with 
        similar errors, to within 1σ. (c.f., Karlsruhe Group.)

Gn = Gshort�dist�nce
n

®
1+ dn(�MS)

h�sG2/�i
(2mh)4

+ · · ·
´

perturbation theory, 
small instantons, etc 
(no IR renormalons)

nonperturbative, 
very small (<0.1%)



Other LQCD technologies

• Higher moments (n=12, 14…) have smaller (amb)2 errors.  

• Avoid (ɑmb)2 errors by using NRQCD/Fermilab b-quark 
action for mb current-current correlators. May need better 
perturbation theory for high-order moments (n=20). 
Cancel Z factors (nonperturbative). (HPQCD analysis soon) 

• αs from Wilson loops remains competitive at smaller 
lattice spacings  (needs HISQ perturbation theory). Also 
light-quark vacuum polarization at large Euclidean q2 

(Adler function). Also … 

• mb and mc from off-shell mh ⟨q|ψ̅hγ5ψh|q’⟩. 

• …

���16



Conclusions

• LQCD likely to deliver adequate precision for ILC needs. 

• Likely to have multiple approaches for each parameter. 

• Improved continuum perturbation theory would help. 

• Highly-improved actions (like HISQ) help keep (ɑmb)2 

errors under control.


